Abstract

The kinetics of cell wall turnover in Bacillus subtilis have been examined in detail. After pulse labeling of the peptidoglycan with N-acetylglucosamine, the newly formed peptidoglycan is stable for approximately three-quarters of a generation and is then degraded by a process that follows first-order kinetics. Deprivation of an auxotroph of amino acids required for protein synthesis results in a cessation of turnover. If a period of amino acid starvation occurs during the lag phase of turnover, then the initiation of turnover is delayed for a period of time equivalent to the starvation period. During amino acid starvation, new cell wall peptidoglycan is synthesized and added to preexisting cell wall. This peptidoglycan after resumption of growth is also subject to degradation (turnover). It is suggested that cell wall turnover is dependent on cell growth and elongation. Several possible control mechanisms for cell wall autolytic enzymes are discussed in light of these observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.