Abstract

AbstractIn order to define the cathodoluminescence (CL) properties of magmatic topaz and its relation with trace-element composition, we studied topaz phenocrysts from the Ary-Bulak ongonite massif, Russia using a wide array of analytical techniques. Scanning electron microscopy CL panchromatic images reveal strong variations, which define micrometre-scale euhedral growth textures. Several truncations of these growth textures occur in single grains implying multiple growth and resorption events. The CL-spectra of both CLbright and -dark domains have a major peak in the near-ultraviolet centred at 393 nm. Cathodoluminescence images taken after several minutes of electron bombardment show decreasing emission intensity. Electron microprobe analyses indicate high F concentrations (average OH/(OH + F) = 0.04 calculated by difference, 100 wt.% – total from electron probe microanalyses), consistent with what has been found previously in topaz-bearing granites, and the OH stretching vibration (∼3653 cm–1) was detected in Raman spectra. Laser ablation inductively-coupled plasma mass spectrometry traverses performed across the CL textures detected trace elements at ppm to thousands of ppm levels, including: Fe, Mn, Li, Be, B, P, Nb, Ta, W, Ti, Ga, light rare-earth elements, Th and U. Lithium, W, Nb and Ta appear to be correlated with CL intensity, suggesting a role for some of these elements in the activation of CL in topaz. In contrast, no clear correlation was found between CL intensity and F contents, despite the fact that the replacement of OH for F is known to affect the cell parameters of topaz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.