Abstract

We present a theory and experiments that relate the NMR longitudinal T1 and transverse T2 relaxation times to the viscosity η for heavy crude oils with different asphaltene concentrations. The nuclear magnetic relaxation equations are based on a one-dimensional (1D) hydrocarbon translational diffusion in a transient porous network of slowly rotating asphaltene macroaggregates containing paramagnetic species VO2+. For heavy crude oils with viscosity η above a certain threshold ηc, the effective 1D confinement causes a transition from the usual Stokes–Einstein relation for the translational diffusion coefficient D ∝ 1/η below ηc to a wetting behavior D ∼ Cte close to the asphaltene aggregates above ηc. The theory is compared successfully with the universal viscosity dependencies of relaxation times T1 and T2 observed over a large range of viscosities. The theory reproduces the relaxation features of the 2D correlation spectra T1–T2 and D–T2 for heavy crude oils when varying the asphaltene concentration. Thi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.