Abstract
Glasses are materials essential for modern technology; they are usually prepared by cooling liquids. Recently, novel ultrastable glasses (SGs) with extraordinary thermodynamic and kinetic stability have been created by vapor deposition at appropriate substrate temperatures. However, the underlying mechanism for the formation of SGs is still not established. For most of the molecular SGs created so far, we demonstrate that the formation of SGs is closely related to the Johari-Goldstein β-relaxation from the fact that the lowest substrate temperatures possible for the formation of SGs match the secondary glass-transition temperatures, where the β-relaxation time reaches 103 s. Theoretically the β-relaxation time via the primitive relaxation time of the coupling model has proven capable of accounting for the enhancement of molecular mobility at the surface. Thus our findings provide evidence to support that the immense enhancement of molecular diffusion at the surface is critical for the formation of SGs. The result has implications in the design and fabrication of SGs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.