Abstract

Shewanella species are well-known for their extracellular electron transfer (EET) capacity, by which these microorganisms can transfer the electrons from intracellular environment to extracellular space for the reduction of the extracellular insoluble electron acceptors. Using a time-stamped data for the paired protein-mRNA, we investigate the impact of differential translation on the EET process of Shewanella oneidensis MR-1. Firstly, differentially translated proteins when O2 levels are switched from high-O2 to low-O2 are identified by using a soft clustering method, 629 up-regulated translated proteins and 767 down-regulated translated proteins are considered to reflect the changes from inactivated to activated EET process. Then, we showed that the degrees of connectivity of differentially translated proteins were significantly larger than those of non-differentially translated proteins, and thereby these differentially translated proteins will be more important in the protein networks. After that, we networked these differentially translated proteins to construct the differentially translated sub-networks, and discussed the most important proteins that are involved in the EET process with the help of centralization analysis of these differentially translated networks. Furthermore, we also studied the differentially translated operonic genes. Taking together, this work searches the key proteins that potentially activated the EET process from a translational efficiency viewpoint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call