Abstract

Cationic reagents are commonly used to facilitate DNA delivery, and transfection experiments are typically initiated in cell culture where the optimal charge ratio is determined. While transfection rates are often enhanced at higher +/– charge ratios, the cellular toxicity associated with the greater amounts of cationic components at elevated charge ratios is often not considered. In addition, the prolonged effects of cationic lipid uptake on cell viability are not evident in a typical 24–48 h transfection experiment. In this study, we compare the transfection efficiency of cationic lipoplexes to effects on viability of cultured cells in both the short and long term (7 days). Our results indicate that, while minimal toxicity is evident 24 h after exposure to DOTAP-based lipoplexes, cell viability continues to decline and ultimately compromises reporter gene expression at longer times. Substitution of a naturally occurring cationic amphiphile, sphingosine, for DOTAP greatly reduces toxicity and allows high expression to be maintained over prolonged periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.