Abstract
Erosion and sediment redistribution are important processes in landscape changes in the short and long term. In this study, the RMMF model of soil erosion and the SEDD model of sediment delivery were used to estimate annual soil loss and sediment yield in an ungauged catchment of the Spanish Pre-Pyrenees and results were interpreted in the context of the geomorphic features. The Estana Catchment is divided into 15 endorheic sub-catchments and there are 17 dolines. Gullies and slopes were the main erosive geomorphic elements, whereas the colluvial, alluvial, valley floor, and doline deposits were depositional elements. Spatially distributed maps of gross soil erosion, sediment delivery ratio (SDR), and sediment yield (SY) were generated in a GIS. Severe erosion rates (>100 Mg ha−1 year−1) were found in gullies, whereas mean and maximum erosion rates were very high on slopes developed on Keuper Facies and high in soils on Muschelkalk Facies. Where crops are grown, the depositional-type geoforms were predicted by the models to have an erosive dynamic. Those results were consistent with the rates of erosion quantified by 137Cs which reflects the significant role of human activities in triggering soil erosion. Catchment area was positively correlated with erosion rate, but negatively correlated with SDR and SY. The latter were negatively correlated with the proportion of the surface catchment covered with forests and scrublands. The topography of the area influenced the high SDR and SY in the dolines and valley floors near the sinks. Intra-basin stored sediment was 59.2% of the total annual eroded soil in the catchment. The combination of the RMMF and SEDD models was an appropriate means of assessing the effects of land uses on soil erosion and obtaining a better understanding of the processes that underlie the geomorphic changes occurring in mountainous environments of the Mediterranean region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.