Abstract

Navigation, mapping, and tracking are state estimation problems relevant to a wide range of applications. These problems have traditionally been formulated using random vectors in stochastic filtering, smoothing, or optimization-based approaches. Alternatively, the problems can be formulated using random finite sets, which offer a more robust solution in poor detection conditions (i.e., low probabilities of detection, and high clutter intensity). This paper mathematically shows that the two estimation frameworks are related, and equivalences can be determined under a set of ideal detection conditions. The findings provide important insights into some of the limitations of each approach. These are validated using simulations with varying detection statistics, along with a real experimental dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.