Abstract
Background and Objectives: The quality of healthcare delivery depends directly on the skills of clinicians. For patients on hemodialysis, medical errors or injuries caused during cannulation can lead to adverse outcomes, including potential death. To promote objective skill assessment and effective training, we present a machine learning approach, which utilizes a highly-sensorized cannulation simulator and a set of objective process and outcome metrics. Methods: In this study, 52 clinicians were recruited to perform a set of pre-defined cannulation tasks on the simulator. Based on data collected by sensors during their task performance, the feature space was then constructed based on force, motion, and infrared sensor data. Following this, three machine learning models– support vector machine (SVM), support vector regression (SVR), and elastic net (EN)– were constructed to relate the feature space to objective outcome metrics. Our models utilize classification based on the conventional skill classification labels as well as a new method that represents skill on a continuum. Results: With less than 5% of trials misplaced by two classes, the SVM model was effective in predicting skill based on the feature space. In addition, the SVR model effectively places both skill and outcome on a fine-grained continuum (versus discrete divisions) that is representative of reality. As importantly, the elastic net model enabled the identification of a set of process metrics that highly impact outcomes of the cannulation task, including smoothness of motion, needle angles, and pinch forces. Conclusions: The proposed cannulation simulator, paired with machine learning assessment, demonstrates definite advantages over current cannulation training practices. The methods presented here can be adopted to drastically increase the effectiveness of skill assessment and training, thereby potentially improving clinical outcomes of hemodialysis treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.