Abstract

To prioritize conservation efforts, it is important to know which plant species are most vulnerable to extinction. Intrinsic extinction vulnerabilities depend on demographic parameters, but for many species these demographic parameters are lacking. Body size has been successfully used as proxy of such parameters to estimate extinction vulnerability of birds and mammals. For plants, not all necessary demographic parameters have been related to size yet.Here, we derived allometric relationships with maximum plant height for the intrinsic population growth rate and the carrying capacity. Furthermore, for the first time, we derived a relationship between the variance in population growth rate due to environmental stochasticity and plant height. These relationships were used to relate extinction vulnerability to maximum plant height.Extinction vulnerability was found to be most sensitive to fluctuations in the population growth rate due to environmental stochasticity. Large plant species were less susceptible to environmental stochasticity, resulting in a lower vulnerability to extinction than small plant species. This negative relationship between plant size and extinction vulnerabilities is in contrast to previous results for mammals and birds.These results increase our theoretical understanding of the relationship between plant functional traits and extinction vulnerabilities and may aid in assessments of data deficient species. The uncertainty in the allometric relationships is, however, too large to quantify true extinction vulnerabilities. Further investigation in the relationship between demographic parameters and plant traits other than height is needed to further enhance our understanding of plant species extinction vulnerabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.