Abstract

Zirconia-supported tungsten oxide (WO(x)/ZrO(2)) is considered an important supported metal oxide model acid catalyst, for which structure-property relationships have been studied for numerous acid-catalyzed reactions. The catalytic activity for xylene isomerization, alcohol dehydration, and aromatic acylation follows a volcano-shape dependence on tungsten surface density. However, WO(x)/ZrO(2) has not been studied for more acid-demanding reactions, like n-pentane isomerization, with regard to surface density dependence. In this work, WO(x)/ZrO(2) was synthesized using commercially available amorphous ZrO(x)(OH)(4-2x) and model crystalline ZrO(2) as support precursors. They were analyzed for n-pentane isomerization activity and selectivity as a function of tungsten surface density, catalyst support type, and calcination temperature. Amorphous ZrO(x)(OH)(4-2x) led to WO(x)/ZrO(2) (WZrOH) that exhibited maximum isomerization activity at ∼5.2 W·nm(-2), and the crystalline ZrO(2) led to a material (WZrO(2)) nearly inactive at all surface densities. Increasing the calcination temperature from 773 to 973 K increased the formation of 0.8-1 nm Zr-WO(x) clusters detected through direct imaging on an aberration-corrected high-resolution scanning transmission electron microscope (STEM). Calcination temperature further increased catalytic activity by at least two times. Brønsted acidity was not affected but Lewis acidity decreased in number, as quantified via pyridine adsorption infrared spectroscopy. WO(x)/ZrO(2) exhibited isomerization activity that peaked within the first 2 h time-on-stream, which may be due to Zr-WO(x) clusters undergoing an activation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.