Abstract

SrTi0.65Fe0.35O3-δ (STF35) thin films grown by pulsed laser deposition were applied as a model system to explore the impact of microstructure on oxygen surface exchange kinetics, of importance for solid oxide cell electrodes. The impact of growth temperature on crystalline quality, orientation, grain size, and surface roughness was evaluated. A contact-free, continuous, in situ Optical Transmission Relaxation (OTR) approach was applied to quantify the films’ native surface oxygen exchange coefficients (kchem). In situ crystallization was used to obtain fast surface exchange kinetics via a dynamic nanostructuring process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call