Abstract

AbstractSoil microbes drive biological functions that mediate chemical and physical processes necessary for plants to sustain growth. Laboratory soil respiration has been proposed as one universal soil health indicator representing these functions, potentially informing crop and soil management decisions. Research is needed to test the premise that soil respiration is helpful for profitable in‐season nitrogen (N) rate management decisions in corn (Zea mays L.). The objective of this research was two‐fold: (i) determine if the amount of N applied at the time of planting effected soil respiration, and (ii) evaluate the relationship of soil respiration to corn yield response to fertilizer N application. A total of 49 N response trials were conducted across eight states over three growing seasons (2014–2016). The 4‐day Comprehensive Assessment of Soil Health (CASH) soil respiration method was used to quantify soil respiration. Averaged over all sites, N fertilization did not impact soil respiration, but at four sites soil respiration decreased as N fertilizer rate applied at‐planting increased. Across all site‐years, soil respiration was moderately related to the economical optimum N rate (EONR) (r2 = 0.21). However, when analyzed by year, soil respiration was more strongly related to EONR in 2016 (r2 = 0.50) and poorly related for the first two years (r2 < 0.20). These results illustrate the factors influencing the ability of laboratory soil respiration to estimate corn N response, including growing‐season weather, and the potential of fusing soil respiration with other soil and weather measurements for improved N fertilizer recommendations.

Highlights

  • The cost per analysis of the Comprehensive Assessment of Soil Health (CASH) soil respiration test is less since it does not rely on detector probes or a Digital Color Reader

  • Adding inorganic N fertilizer at planting had no significant effect on soil respiration across most sites, an effect was detected at 10% of sites

  • These results combined with previous studies by others confirms that further research is needed to determine the role of N fertilizer additions on soil respiration

Read more

Summary

Objectives

The objective of this research was two-fold: (i) determine if the amount of N applied at the time of planting effected soil respiration, and (ii) evaluate the relationship of soil respiration to corn yield response to fertilizer N application. The objective of this research was to evaluate over multiple growing seasons and diverse soil environments the relationship of soil respiration to corn yield response to in-season N fertilization (i.e. EONR)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.