Abstract

Understanding the influence of peripheral functionality on optoelectronic properties of conjugated materials is an important task for the continued development of chromophores for myriad applications. Here, π-extended 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) chromophores with varying electron-donating or electron-withdrawing capabilities were synthesized via Suzuki cross-coupling reactions, and the influence of functionality on optoelectronic properties was elucidated. First, chromophores display distinct differences in the UV-vis absorbance spectra measured via UV-vis absorbance spectroscopy in addition to changes in the onset of oxidation measured with cyclic voltammetry and differential pulse voltammetry. Solution oxidation studies found that variations in the electron-donating and -withdrawing capabilities result in different absorbance profiles of the radical cations that correspond to quantifiably different colors. In addition to fundamental insights into the molecular design of DHPP chromophores and their optoelectronic properties, two chromophores display high-contrast electrochromism, which makes them potentially compelling in electronic devices. Overall, this study represents the ability to fine-tune the optoelectronic properties of DHPP chromophores in their neutral and oxidized states and expands the understanding of structure-property relationships that will guide the continued development of DHPP-based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.