Abstract
We use a model of solar eruptions that combines a loss-of-equilibrium coronal mass ejection (CME) model with a multi-threaded flare loop model in order to understand the relationship between the CME kinematics, thermal energy release, and soft X-ray emissions in solar eruptions. We examine the correlation between CME acceleration and the peak soft X-ray flux in many modeled cases with different parameters, and find that the two quantities are well correlated. We also examine the timing of the peak acceleration and the light curve derivative, and find that these quantities tend to peak at similar times for cases where the magnetic field is high and the inflow Alfven Mach number is fast. Finally, we study the relationship between the total thermal energy released in the model and the calculated peak soft X-ray flux of the resulting flare. We find that there is a power-law relationship between these two quantities, with F peak ~ E α, where α is between 2.54 and 1.54, depending on the reconnection rate. This finding has repercussions for the assumptions underlying the Neupert effect, in which the peak soft X-ray flux is assumed to be proportional to the thermal energy release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.