Abstract

Molecular dynamics simulations of the LiF-BeF(2) molten salt mixture are used to establish relationships between composition, structural order, entropy, and transport properties of multi-component ionic liquids. A sharp rise in tetrahedral order associated with formation of the fluoroberyllate network occurs for compositions with BeF(2) concentrations greater than that of the Li(2)BeF(4)-BeF(2) eutectic. The excess entropy of the liquid in this regime, within the pair correlation approximation, is strongly correlated with the local tetrahedral order. The different degree of participation of beryllium, fluorine, and lithium ions in the cooperative dynamics of the fluoroberyllate network can be related to the degree of deviation from Rosenfeld-type excess entropy scaling, with the lithium ions remaining essentially unaffected by the liquid state network. We demonstrate that the deviations from Nernst-Einstein and Stokes-Einstein behaviour emerge only in temperature-composition regimes where tetrahedral order strongly correlates with the pair entropy. Implications for understanding structure-property relationships in other ionic liquids, such as molten salts, oxide melts, and RTILs are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call