Abstract

A simple model is presented which relates the electromotive force drift rate of Pt–Rh thermoelements to dS/dc, the sensitivity of the Seebeck coefficient, S, to rhodium mass fraction, c. The model has been tested by repeated measurements of a Pt–Rh thermocouple assembly consisting of five thermoelements, using a Co-C high-temperature fixed point ( $$1324{\,}^{\circ }{\mathrm{C}}$$ ) for a total duration of 500 h. By considering various thermocouples from the assembly, it is demonstrated that in this case, remarkably, there is a linear relationship between the measured drift rate and the combined dS/dc, where the combination is determined by addition of the individual values for each wire. Particular emphasis is placed on evaluation of the uncertainties associated with the calculations. This result supports previous findings that the thermoelectric stability of Pt–Rh thermoelements improves as the rhodium mass fraction increases. Within this paradigm, it is shown that for a selected Pt–Rh thermoelement of any given composition, there exists a second thermoelement having a composition that yields a minimum drift when combined with the first to form a thermocouple.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.