Abstract
Shot peening is a surface impact treatment widely used to improve the performance of metal parts and welded details subjected to fatigue loading, contact fatigue, stress corrosion and other damage mechanisms. The better performance of the peened parts is mainly due to the residual stresses resulting from the plastic deformation of the surface layers of the material caused by the impact of the shot. Shot peening intensity is usually quantified by means of the Almen-scale, which measures the residual arc height of a strip made of a specific material, and of a pre-defined size. The scale does not, in other words, apply solely to the residual stress field of a component of unspecified material and size. In this paper, a finite element to predict the residual stresses induced by shot peening in a metal part and to relate these stresses to Almen intensity is proposed; the aim is to provide the designer with a useful tool with which to choose the optimal treatment parameters with respect to the mechanical behaviour of the peened parts. Experimental measurements of residual stresses and a comparison with existing experimental data validate this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.