Abstract

Abstract The dynamics of animal body water and metabolism are integral aspects of biological function but are difficult to measure, particularly in free-ranging individuals. We demonstrate a new method to estimate inputs to body water via analysis of Δ17O, a measure of 17O/16O relative to 18O/16O. Animal body water is primarily a mixture of drinking or food water (meteoric water; Δ17O ≈ 0.030 per mille [‰]) and metabolic water synthesized from atmospheric oxygen (Δ17O ≈ –0.450‰). Greater drinking or food water intake should increase Δ17O toward 0.030‰, whereas greater metabolic rate should decrease Δ17O toward –0.450‰. We found that wild mammal Δ17O values generally increased with body mass, consistent with both a decline in mass-specific metabolic rate and an increase in water intake. Captive mouse (Peromyscus maniculatus) Δ17O values were higher than predicted but exhibited the expected relative change based on metabolic rate and water intake. Measurements of Δ17O may enable novel ecophysiological studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.