Abstract

Relatedness coefficients which seek the identity-by-descent of genetic markers are described. The markers are in groups of two, three or four, and if four, can consist of two pairs. It is essential to use cumulants (not moments) for four-marker-gene probabilities, as the covariance of homozygosity, used in four-marker applications, can only be described with cumulants. A covariance of homozygosity between pairs of markers arises when populations follow a mixture distribution. Also, the probability of four markers all identical-by-descent equals the normalized fourth cumulant. In this article, a "genetic marker" generally represents either a gene locus or an allele at a locus. Applications of three marker coefficients mainly involve conditional regression, and applications of four marker coefficients can involve identity disequilibrium. Estimation of relatedness using genetic marker data is discussed. However, three- and four-marker estimators suffer from statistical and numerical problems, including higher statistical variance, complexity of estimation formula, and singularity at some intermediate allele frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call