Abstract

Graves' disease (GD) is an important and prevalent thyroid autoimmune disorder. Standard therapy for GD consists of antithyroid drugs (ATD) with treatment periods of around 12months but relapse is frequent. Since predictors for relapse are difficult to identify the individual decision making for optimal treatment is often arbitrary. After reviewing the literature on this topic we summarize important factors involved in GD and with respect to their potential for relapse prediction from markers before and after treatment. This information was used to design a mathematical model integrating thyroid hormone parameters, thyroid size, antibody titers and a complex algorithm encompassing genetic predisposition, environmental exposures and current immune activity in order to arrive at a prognostic index for relapse risk after treatment. In the search for a tool to analyze and predict relapse in GD mathematical modeling is a promising approach. In analogy to mathematical modeling approaches in other diseases such as viral infections, we developed a differential equation model on the basis of published clinical trials in patients with GD. Although our model needs further evaluation to be applicable in a clinical context, it provides a perspective for an important contribution to a final statistical prediction model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call