Abstract

As the amount of reclaimed asphalt pavement (RAP) material used in asphalt mixtures has increased recently, it is vital to address problems regarding aged binder incorporated in RAP. Asphalt binder hardens during its production process as well as during service life of pavements. External influences such as oxygen and ultraviolet radiation affect greatly bitumen characteristics. Thanks to adding rejuvenating agents, the original binder properties should be recovered and resulting asphalt binder parameters should become equal to those measured upon the reference material. In this study, four different rejuvenator agents and one neat soft binder were employed to rejuvenate the artificially aged binder by a complete blending between both constituents. Thereafter, empirical as well as performance based binder properties were examined with a dynamic shear rheometer (DSR) and with a bending beam rheometer (BBR). Three different dosages of each rejuvenator were added to evaluate the required amount for the original binder properties to be restored. Moreover, the softening efficiency of each agent was assessed by means of the Ring and Ball test. Finally, the optimum amount of each rejuvenator needed for the blend to achieve the target specification was determined. It can be concluded that the rejuvenators affect binder properties greatly, and mainly in a positive way. However, the data also indicate significant discrepancies between the types of the rejuvenator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.