Abstract

Beneficial acclimation hypothesis (BAH) is the phenotypic plasticity in response to changing environments which enables organisms to enhance their fitness. In recent years, however, BAH has received vigorous criticism and is still debatable. In this study, we tested thermal hardiness phenotypes (melanization, chill coma recovery, heat knockdown and percentage survival) on adult and pre-adult stages of Drosophila nepalensis, reared in different thermal environments (14, 17, 21 and 25°C) to check whether increasing natural surrounding temperature and acclimation limit towards environmental change is detrimental or beneficial. Results showed that rearing D. nepalensis at higher temperatures (21 and 25°C) reduces its melanization and cold hardiness but improves heat knockdown times. When temperature was raised to 26.2°C (0.6°C above the upper thermal maxima), to determine the short-term acclimation effects, survival and fitness of adults diminished approximately 1.5 to 2 folds. These results suggest that D. nepalensis has long-term developmental acclimation to both heat and cold which would be extremely beneficial as temperatures and climates alter in the region due to global warming. However, a lack of short-term heat acclimation suggests that rapid shifts in thermal extreme could be detrimental to D. nepalensis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.