Abstract

We introduce a rejection-free, flat histogram, cluster algorithm to determine the density of states of hard-core lattice gases. We show that the algorithm is able to efficiently sample low entropy states that are usually difficult to access, even when the excluded volume per particle is large. The algorithm is based on simultaneously evaporating all the particles in a strip and reoccupying these sites with a new appropriately chosen configuration. We implement the algorithm for the particular case of the hard-core lattice gas in which the first k next-nearest neighbors of a particle are excluded from being occupied. It is shown that the algorithm is able to reproduce the known results for k=1,2,3 both on the square and cubic lattices. We also show that, in comparison, the corresponding flat histogram algorithms with either local moves or unbiased cluster moves are less accurate and do not converge as the system size increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.