Abstract

False-positive removal is a necessary step for robust video object segmentation because of the presence of visual noise introduced by unavoidable factors such as background movements, light changes, artifacts, etc. In this paper we present a set of generic visual cues that enable the discrimination between true positives and false positives detected by a video object segmentation approach. The devised object features encode real-world object properties, such as shape regularity, marked boundaries, color and texture uniformity and motion continuity and can be used in a post-processing layer to reject false positives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.