Abstract
Although Optical character recognition (OCR) technology has achieved huge progress in recent years, character misrecognition is inevitable. In order to realize high fidelity content of document digitalization, we propose a new Convolutional neural networks (CNN) based confidence estimation method. We detect the misrecognized characters through comparing the confidence value with a preset threshold, so as to leave the recognition errors as embedded images in the output digital documents. We adopted sofmax as the estimation of posteriori probability, overlap pooling and maxout with dropout technologies in CNN architecture design. Experimental results show that our method has achieved an explicit improvement compared to baseline system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.