Abstract

Reissner's fibre (RF) is formed by the polymerization of the glycoprotein secreted by the subcommissural organ (SCO). The SCO also secretes soluble glycoprotein into the cerebrospinal fluid (CSF); variations in RF and SCO have been reported in hydrocephalus. On the other hand, hydrocephalus and other brain alterations have been described in p73 mutant mice. The p73 belongs to the tumour suppressor p53 protein family and has two isoforms: the TAp73 with apoptotic activity and DeltaNp73 with anti-apoptotic function. Moreover, the TAp73 isoform is glycosylated and secreted into the CSF. In the present work, we analysed the variations in RF and p73 proteins in the CSF and SCO of spontaneously hydrocephalic rats. Brains from control rats and spontaneously hydrocephalic rats of 12 months of age were used. The SCO sections were immunohistochemically processed with anti-TAp73 and anti-Reissner fibre (AFRU). The spontaneous hydrocephalus presents a decrease in the AFRU immunoreactive material in the SCO and an absence of RF. The anti-TAp73 was also present, slightly decreased, in the hydrocephalic SCO. AFRU and p73 bands were also detected in the CSF by western blot and six AFRU and p73 protein bands of a similar molecular weight were found in the CSF of the control rats. The number of AFRU and p73 bands was lower in the hydrocephalic rats than in the control rats. In conclusion, hydrocephalus produces a decrease in the secretions of the SCO and an absence of RF and a decrease in p73 and RF proteins in the CSF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call