Abstract

Reissner's fiber (RF) is a threadlike structure present in the third and fourth ventricles and in the central canal of the spinal cord. RF develops by the assembly of glycoproteins released into the cerebrospinal fluid (CSF) by the subcommissural organ (SCO). SCO cells differentiate early during embryonic development. In chick embryos, the release into the CSF starts at embryonic day 7 (E7). However, RF does not form until E11, suggesting that a factor other than release is required for RF formation. The aim of the present investigation was to establish whether the factor(s) triggering RF formation is (are) intrinsic or extrinsic to the SCO itself. For this purpose, SCO explants from E13 chick embryos (a stage at which RF has formed) were grafted at two different developmental stages. After grafting, host embryos were allowed to survive for 6-7 days, reaching E 9 (group 1) and E13 (group 2). In experimental group 1, the secretion released by the grafted SCOs never formed a RF; instead, it aggregated as a flocculent material. In experimental group 2, grafted SCO explants were able to develop an RF-like structure, similar to a control RF. These results suggest that the factor triggering RF formation is not present in the SCO itself, since E13 SCO secretion forms an RF in E13 brains but never develops RF-like structures when placed in earlier developmental environments. Furthermore, the glycoproteins released by implanted SCOs bind specifically to several structures: the apical portion of the mesencephalic floor plate and the choroid plexus of the third and fourth ventricles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call