Abstract

We made a narrowband NB973 (bandwidth of 200A at 9755A) imaging of the Subaru Deep Field (SDF) and found two z=7 Lyman alpha emitter (LAE) candidates down to NB973=24.9. Carrying out deep follow-up spectroscopy, we identified one of them as a real z=6.96 LAE. This has shown that galaxy formation was in progress just 750 Myr after the Big Bang. Meanwhile, the Lyman alpha line luminosity function of LAE is known to decline from z=5.7 to 6.6 in the SDF. L* at z=6.6 is 40-60% of that at z=5.7. We also confirm that the number density of z=7 LAE is only 17% of the density at z=6.6 comparing the latest SDF LAE samples. This series of significant decreases in LAE density with increasing redshift can be the result of galaxy evolution during these epochs. However, using the UV continuum luminosity functions of LAEs, those of Lyman break galaxies, and a LAE evolution model based on the hierarchical clustering, we find that galaxy evolution alone cannot explain all the decrease in density. This extra density deficit can be interpreted as the attenuation of the Lyman alpha photons from LAEs due to a rapid evolution of neutral hydrogen fraction during the ongoing cosmic reionization at z~6.6-7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.