Abstract

Pyrococcus furiosus has two types of NiFe-hydrogenases: a heterotetrameric soluble hydrogenase and a multimeric transmembrane hydrogenase. Originally, the soluble hydrogenase was proposed to be a new type of H2 evolution hydrogenase, because, in contrast to all of the then known NiFe-hydrogenases, the hydrogen production activity at 80 degrees C was found to be higher than the hydrogen consumption activity and CO inhibition appeared to be absent. NADPH was proposed to be the electron donor. Later, it was found that the membrane-bound hydrogenase exhibits very high hydrogen production activity sufficient to explain cellular H2 production levels, and this seems to eliminate the need for a soluble hydrogen production activity and therefore leave the soluble hydrogenase without a physiological function. Therefore, the steady-state kinetics of the soluble hydrogenase were reinvestigated. In contrast to previous reports, a low Km for H2 (approximately 20 microM) was found, which suggests a relatively high affinity for hydrogen. Also, the hydrogen consumption activity was 1 order of magnitude higher than the hydrogen production activity, and CO inhibition was significant (50% inhibition with 20 microM dissolved CO). Since the Km for NADP+ is approximately 37 microM, we concluded that the soluble hydrogenase from P. furiosus is likely to function in the regeneration of NADPH and thus reuses the hydrogen produced by the membrane-bound hydrogenase in proton respiration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call