Abstract
The B̃1A1 ← X̃1A1 absorption spectra of propargyl cations H2C3H+ and D2C3D+ were simulated by an efficient two-dimensional (2D) quantum model, which includes the C-C stretch (v5) and the C≡C stretch (v3) vibrational modes. The choice of two modes was based on a scheme that can identify the active modes quantitively by examining the normal coordinate displacements (∆Q) directly based on the ab initio equilibrium geometries and frequencies of the X̃1A1 and B̃1A1 states of H2C3H+. The spectrum calculated by the 2D model was found to be very close to those calculated by all the higher three-dimensional (3D) quantum models (including v5, v3, and another one in 12 modes of H2C3H+), which validates the 2D model. The calculated B̃1A1 ← X̃1A1 absorption spectra of both H2C3H+ and D2C3D+ are in fairly good agreement with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.