Abstract

Reinstatement of neural activity is hypothesized to underlie our ability to mentally travel back in time to recover the context of a previous experience. We used intracranial recordings to directly examine the precise spatiotemporal extent of neural reinstatement as 32 participants with electrodes placed for seizure monitoring performed a paired-associates episodic verbal memory task. By cueing recall, we were able to compare reinstatement during correct and incorrect trials, and found that successful retrieval occurs with reinstatement of a gradually changing neural signal present during encoding. We examined reinstatement in individual frequency bands and individual electrodes and found that neural reinstatement was largely mediated by temporal lobe theta and high-gamma frequencies. Leveraging the high temporal precision afforded by intracranial recordings, our data demonstrate that high-gamma activity associated with reinstatement preceded theta activity during encoding, but during retrieval this difference in timing between frequency bands was absent. Our results build upon previous studies to provide direct evidence that successful retrieval involves the reinstatement of a temporal context, and that such reinstatement occurs with precise spatiotemporal dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.