Abstract

Tauopathies such as Alzheimer's disease (AD), Frontotemporal dementia, and parkinsonism linked to chromosome 17 (FTDP-17), etc. are characterized by tau hyperphosphorylation and distinguished accumulation of paired helical filaments (PHFs)/or neurofibrillary tangles (NFTs) in a specific-neuronal subset of the brain. Among different reported risk factors, type 2 diabetes (T2D) has gained attention due to its correlation with tau pathogenesis. However, mechanistic details and the precise contribution of insulin pathway in tau etiology is still debatable. We demonstrate that expression of human tau causes overactivation of insulin pathway in Drosophila disease models. We subsequently noted that tissue-specific downregulation of insulin signaling or even exclusive reduction of its growth-promoting sub-branch effectively reinstates the overactivated insulin signaling pathway in human tau expressing cells, which in turn restricts pathogenic tau hyperphosphorylation and aggregate formation. It was further noted that restored tau phosphorylation was achieved due to a reestablished balance between the levels of different kinase(s) (GSK3β and ERK/P38 MAP kinase) and phosphatase (PP2A). Taken together, our study demonstrates a precise involvement of the insulin pathway and associated molecular events in the pathogenesis of human tauopathies in Drosophila, which will be immensely helpful in developing novel therapeutic options against these devastating human brain disorders. Moreover, our study reveals an interesting link between tau etiology and aberrant insulin signaling, which is a characteristic feature of Type 2 Diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call