Abstract

Selective transection of the B or C preganglionic nerve fibres respectively innervating the B and C sympathetic neurons was carried out on the last two ganglia of the sympathetic chain of the frog Rana esculenta. At different times thereafter, the cross-reinnervation of one type of denervated neuron by nerve endings sprouting within the ganglia from intact fibres innervating the other type was investigated by both the quantitative morphology of the synaptic contacts and related structures and electrophysiological recordings of ganglionic transmission. As there are no fine ultrastructural criteria for distinguishing B from C neurons, the overall density of synapse, simple contact, and 'vacated' postsynaptic differentiation profiles was measured in the two cases of selective section and compared with the values for normal ganglia, therefore permitting the progress of cross-reinnervation with time for each type of neuron to be followed. At ten days after section of the C preganglionic fibres, immunocytochemistry showed that there were no anti-LH-RH-like peptide containing fibres within the ganglia. The B myelinated preganglionic fibres were able to reinnervate the denervated C neurons, with return to normal values of synaptic density and fully efficient transmission at two months in all tested C neurons. However, the latency of orthodromic action potentials was close to that of normally innervated B neurons. In contrast, the C non-myelinated preganglionic fibres reinnervated the denervated B neurons with limited efficiency, the synaptic density being two-thirds the normal value after five months, while subthreshold excitatory postsynaptic potentials or action potentials were only recorded in 44% of the tested B neurons. The latency of these orthodromic responses was close to that of normally innervated C neurons. It is postulated that the poor cross-reinnervation of B neurons could be due to insufficient sprouting of C fibres and/or lack of 'affinity' between C fibres and B neurons. In addition, these experiments demonstrated that the subsynaptic apparatus, fairly characteristic of frog ganglionic synapses, is present in both types of sympathetic neurons, although predominantly in B neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call