Abstract

BackgroundThe common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure.MethodsThe proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required.Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests.ResultsA 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018).ConclusionsIn an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses.

Highlights

  • The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control

  • All specimens were long enough to Results A total of 18 complete interlocking procedures (4 screws each) were performed on 10 specimens. 2 pilot tests were excluded from the analysis. 8 valid procedures were performed with the freehand technique and 10 procedures were carried out with the guided freehand technique

  • Radiation Average number of fluoroscopy shots per inserted screw was 7.4 ± 3.4 for the guided freehand technique and 17.6 ± 10.3 for the freehand technique, corresponding to a reduction of 58% when using guided freehand (Table 1) (p < 0.001)

Read more

Summary

Introduction

The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. The gold standard for surgical treatment of diaphyseal lower limb long bone fractures is the use of intramedullary nails [1]. These nails are locked into place with proximal and distal screws to prevent rotation and shortening of the fractured limb. A high rate of screw misplacements is reported [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call