Abstract

Power conversion efficiencies (PCEs) of inverted perovskite solar cells (PSCs) have been improved by the use of a self-assembled monolayer (SAM) hole transport layer. Long-term stability of PSCs requires keeping the SAM compact under the perovskite layer during operation. We found that strong polar solvents in the perovskite precursor desorb the SAM if it is anchored on substrates by hydrogen-bonded, rather than covalently bonded, hydroxyl groups. We used atomic-layer deposition to create an indium tin oxide substrate with a fully covalent hydroxyl-covered surface for SAM anchoring, as well as a SAM with a trimethoxysilane group that exhibited strong tridentate anchoring to the substrate. The resulting PSCs achieved PCEs of 24.8 (certified 24.6) and 23.2% with aperture areas of 0.08 and 1.01 square centimeters, respectively. The devices retained 98.9 and 98.2% of the initial PCE after 1000 hours damp-heat test and operation in maximum power point tracking at 85°C for 1200 hours under standard illumination, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call