Abstract

This paper presents an enhanced method of testing validity of arithmetic optimization of C compilers using randomly generated programs. Its bug detection capability is improved over an existing method by 1) generating longer arithmetic expressions and 2) accommodating multiple expressions in test programs. Undefined behavior in long expressions is successfully eliminated by modifying problematic subexpressions during computation of expected values for the expressions. A new method for including floating point operations into compiler random testing is also proposed. Furthermore, an efficient method for minimizing error inducing test programs is presented, which utilizes binary search. Experimental results show that a random test system based on our method has higher bug detection capability than existing methods; it has detected more bugs than previous method in earlier versions of GCCs and has revealed new bugs in the latest versions of GCCs and LLVMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.