Abstract
Nanofibrous hydrogels are pervasive in load-bearing soft tissues, which are believed to be key to their extraordinary mechanical properties. Enlighted by this phenomenon, a novel reinforcing strategy for polymeric hydrogels is proposed, where polymer segments in the hydrogels are induced to form nanofibers in-situ by bolstering their controllable aggregation on the nanoscale level. Polyvinyl alcohol hydrogels are chosen to demonstrate the virtue of this strategy. A nonsolvent-quenching step is introduced into the conventional solvent-exchange hydrogel preparation approach, which readily promotes the formation of nanofibrous hydrogels in the following solvent-tempering process. The resultant nanofibrous hydrogels demonstrate significantly improved mechanical properties and swelling resistance, compared to the conventional solvent-exchange hydrogels with identical compositions. This work validates the hypothesis that bundling polymer chains to form nanofibers can lead to nanofibrous hydrogels with remarkably enhanced mechanical performances, which may open a new horizon for single-component hydrogel reinforcement. This article is protected by copyright. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.