Abstract

Polylactide (PLA) nanocomposites with multi-walled carbon nanotubes (MWNTs) grafted with poly(L-lactide) or poly(D-lactide) were prepared by solution casting, and their thermal and mechanical properties were evaluated. MWNTs containing hydroxyl groups were treated by ring-opening polymerization of either L-lactide or D-lactide. Fourier transform infrared spectroscopy confirmed that the MWNT surfaces had been modified by the PLLA or PDLA chains. The thermal properties were measured by differential scanning calorimetry and thermogravimetric analysis. The mechanical properties were examined using a universal testing machine. The morphology of the fractured surfaces of the PLA nanocomposites was observed by scanning electron microscopy and transmission electron microscopy. PDLA-g-MWNTs were dispersed more uniformly compared to PLLA-g-MWNTs in the PLA matrix. The incorporation of PDLA-g-MWNTs greatly improved the tensile strength of the nanocomposites regardless of the contents. Thermal analysis revealed different characteristics at specific composites depending on the type of modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call