Abstract

The microstructure evolution, microhardness and wear resistance of Ni45 composite coatings reinforced by in-situ NbC were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microprobe analyzer (EPMA), transmission electron microscopy (TEM), digital microhardness tester and wear test machine. The results showed that the matrix was mainly composed of γ-Ni(Fe) solid solution, and the reinforcement phases consisted of Cr23C6, NbC, Cr7C3, Cr2B and little content of Cr3C2. In-situ NbC particles were homogeneous and heterogeneous nucleation from the Nb and C atoms dissolved in the molten pool, which was first precipitated from the Ni45 alloy liquid. With the increase of NbC designed content, the microhardness of coating increased gradually. When the designed content was 20%, in-situ NbC particles were regular and distributed homogeneously, and the composite coating exhibited excellent wear resistance which was higher 4.43 times than that of the original coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.