Abstract
Hydrogels are polymeric substances with hydrophilic features, which make them capable of holding large volume of liquids in their three-dimensional network structures. Hydrogels are finding wide ranges of applications in several biomedical, industrial, and environmental fields. In this study, hydrogels were prepared using chitosan powders, and reinforced with electrospun poly (methyl methacrylate) (PMMA) and poly vinyl chloride (PVC) nanofibers. The chitosan hydrogels were produced by dissolving chitosan in 1% acetic acid solution and mixing thoroughly. Gentamycin, an antibacterial agent, was also added to further increase the effectiveness of hydrogels for biomedical purposes. The prepared hydrogels were subjected to swelling, Fourier-transform infrared spectroscopy (FTIR) and compression tests. The test results showed that hydrogel provided very high-water absorption capacity (10–11 folds). FTIR studies conducted on the hydrogel samples with different percentages of inclusions revealed that some of the compounds were covalently bonded in the structures, which directly affect the mechanical strength and liquid absorption capacity. The compression tests performed at different loads indicated that PVC and PMMA nanofibers reinforced hydrogels provided up to 75% much higher compression strengths when compared to the base-case (without any reinforcement).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.