Abstract

Damage to the cerebellum causes a disabling movement disorder called ataxia, which is characterized by poorly coordinated movement. Arm ataxia causes dysmetria (over- or under-shooting of targets) with many corrective movements. As a result, people with cerebellar damage exhibit reaching movements with highly irregular and prolonged movement paths. Cerebellar patients are also impaired in error-based motor learning, which may impede rehabilitation interventions. However, we have recently shown that cerebellar patients can learn a simple reaching task using a binary reinforcement paradigm, in which feedback is based on participants' mean performance. Here, we present a pilot study that examined whether patients with cerebellar damage can use this reinforcement training to learn a more complex motor task-to decrease the path length of their reaches. We compared binary reinforcement training to a control condition of massed practice without reinforcement feedback. In both conditions, participants made target-directed reaches in 3-dimensional space while vision of their movement was occluded. In the reinforcement training condition, reaches with a path length below participants' mean were reinforced with an auditory stimulus at reach endpoint. We found that patients were able to use reinforcement signaling to significantly reduce their reach paths. Massed practice produced no systematic change in patients' reach performance. Overall, our results suggest that binary reinforcement training can improve reaching movements in patients with cerebellar damage and the benefit cannot be attributed solely to repetition or reduced visual control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.