Abstract

Electrospinning has been extensively accepted as one of most important techniques for fabrication of scaffolds for bone tissue engineering. Polycaprolactone is one of the most applied electro-spinned scaffolds. Since low mechanical strength of polycaprolactone scaffold leads to the limitation of its applications, composition of polycaprolactone with ceramic particles is of great interest. Several studies have been conducted on fabrication and characterization of polycaprolactone nanocomposite scaffolds, but none of these researches has used mesoporous silica particles (KIT-6). In this project, a high-strength and bioactive nanocomposite scaffold has been developed which consists of polycaprolactone and mesoporous silica particles. Results showed that increase of KIT-6 particles percentages up to 5% leads to the enhancement of tensile strength of scaffold from 1.8 ± 0.2 to 2.9 ± 1.0 MPa. Although wettability of scaffolds in presence of particles was totally lower than pure PCL scaffold, but increase of particles percentages led to enhancement of wettability and water absorption of scaffolds. On the other hand presence of KIT-6 particles increased specific surface area and also bioactivity of scaffold was increased by enhancement of ion exchange between surface and simulated body fluid. Finally it was concluded that PCL-KIT-6 scaffolds are a suitable candidate for application in tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call