Abstract

Complicated oxygen evolution reaction (OER) poses the bottleneck in improving the efficiency of hydrogen production through water electrolysis. Herein, an integrated strategy to modulate the electronic structure of NiFe layered double hydroxide (NiFe-LDH) is reported by constructing Ag-incorporated NiCo-PBA@NiFe-LDH heterojunction with a hierarchical hollow structure. This "double heterojunction" facilitates local charge polarization at the interface, thereby promoting electron transfer and reducing the adsorption energy of intermediates, ultimately enhancing the intrinsic activity of the catalyst. It is noteworthy that an exchange bias field is observed between NiCo-PBA and NiFe-LDH, which will be conducive to regulating the electron spin states of metals and facilitating the production of triplet oxygen. Additionally, the unique hierarchical nanoboxes provide a large specific surface area that ensures adequate exposure to adsorption sites and active sites. Profiting from the synergistic advantages, the overpotential is as low as 190mV at a current density of 10mAcm-2, with a low Tafel slope of 21mVdec-1. Moreover, density functional theory (DFT) calculation further substantiated that the incorporation of Ag in the heterojunction can effectively reduce the adsorption energy of reactant intermediates and enhance the conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call