Abstract

Calcareous sand is a special soil formed by the accumulation of carbonate fragments. Its compressibility is caused by a high void ratio and breakable particles. Because of its high carbonate content and weak cementation, its load-bearing capacity is limited. In this study, the optimal stimulation solution was obtained with response surface methodology. Then, the effect of reinforcing calcareous sand was analysed with unconfined compressive strength (UCS) tests, calcium carbonate content tests, microscopy and microbial community analyses. The components and concentrations of the optimal stimulation solution were as follows: sodium acetate (38.00 mM), ammonium chloride (124.24 mM), yeast extract (0.46 g/L), urea (333 mM), and nickel chloride (0.01 mM), and the pH was 8.75. After the calcareous sand was treated with the optimal stimulation scheme, the urease activity was 6.1891 mM urea/min, the calcium carbonate production was 8.40%, and the UCS was 770 kPa, which constituted increases of 71.41%, 35.40%, and 83.33%, respectively, compared with the initial scheme. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses showed that calcium carbonate crystals were formed between the particles of the calcareous sand after the reaction, and the calcium carbonate crystals were mainly calcite. Urease-producing microorganisms became the dominant species in calcareous sand after treatment. This study showed that biostimulation-induced mineralization is feasible for reinforcing calcareous sand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.