Abstract

The synthesis and characterization of aminopropyl-terminated polydimethylsiloxane- treated carbon nanotube (AFCNT)-reinforced epoxy nanocomposites are reported in the current study. The amine functionalization of the CNTs was performed with a reaction to PDMS-NH2. The AFCNTs were homogeneously dispersed in epoxy resin by using an emulsifier and a three-roller mill. The AFCNTs were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The curing behavior of the epoxy/AFCNT was studied using a differential scanning calorimeter (DSC). The tensile and impact strengths of the 2.0 wt.% AFCNT-reinforced epoxy nanocomposite were enhanced by 43.2% and 370%, respectively. Moreover, the glass transition temperature (Tg) was also enhanced by 21 °C. Furthermore, significant enhancements were observed in the initial degradation and char yield values. SEM results confirmed that the AFCNTs were highly dispersed in the polymeric matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call