Abstract

Acrylic resins are commonly used in many dental applications; especially in the fabrication of provisional fixed partial dentures. Among noticed technical drawbacks associated with this material are unsatisfactory mechanical properties. Moreover, if acrylic resins are exposed to moist environment, water sorption results in further mechanical deterioration. In order to improve the mechanical properties, aluminum, magnesium, and zirconium oxide powders and pulverized E-glass particles were separately admixed with pre-polymerized acrylic resin beads prior to mixing with monomer liquid. Particle loading ratios were 1, 2 and 3 vol.% with respect to pre-polymerized beads. Poly(methyl methacrylate), poly(ethyl methacrylate) and poly(isobutyl methacrylate) were used as resin matrices. Furthermore, a metal primer agent was employed in order to form a strong interphase between admixed particles and polymer matrix phase. Samples were subjected to three-point transverse bending tests at a crosshead speed of 10 mm/min. It was concluded that (1) addition of particles generally increases the water sorbed by the composite resins systems, (2) however, two vol.% admixtures in a PMMA resin matrix showed significant improvements in the mechanical properties (p < 0.05), (3) among the oxide particles, zirconia exhibited the greatest improvements in modulus of elasticity, transverse strength, toughness and hardness, and (4) mechanical properties (transverse strength, 0.2% offset yield strength and modulus of elasticity) were linearly correlated to hardness numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call