Abstract
Unmanned aerial vehicles (UAVs) with mounted base stations are a promising technology for monitoring smart farms. They can provide communication and computation services to extensive agricultural regions. With the assistance of a Multi-Access Edge Computing infrastructure, an aerial base station (ABS) network can provide an energy-efficient solution for smart farms that need to process deadline critical tasks fed by IoT devices deployed on the field. In this paper, we introduce a multi-objective maximization problem and a Q-Learning based method which aim to process these tasks before their deadline while considering the UAVs' hover time. We also present three heuristic baselines to evaluate the performance of our approaches. In addition, we introduce an integer linear programming (ILP) model to define the upper bound of our objective function. The results show that Q-Learning outperforms the baselines in terms of remaining energy levels and percentage of delay violations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.