Abstract

The last decade has seen the development and application of data-driven methods taking off in nuclear engineering research, aiming to improve the safety and reliability of nuclear power. This work focuses on developing a reinforcement learning-based control sequence optimization framework for advanced nuclear systems, which not only aims to enhance flexible operations, promoting the economics of advanced nuclear technology, but also prioritizing safety during normal operation. At its core, the framework allows the sequence of operational actions to be learned and optimized by an agent to facilitate smooth transitions between the modes of operations (i.e., load-following), while ensuring that all safety significant system parameters remain within their respective limits. To generate dynamic system responses, facilitate control strategy development, and demonstrate the effectiveness of the framework, a simulation environment of a pebble-bed high-temperature gas-cooled reactor was utilized. The soft actor-critic algorithm was adopted to train a reinforcement learning agent, which can generate control sequences to maneuver plant power output in the range between 100% and 50% of the nameplate power through sufficient training. It was shown in the performance validation that the agent successfully generated control actions that maintained electrical output within a tight tolerance of 0.5% from the demand while satisfying all safety constraints. During the mode transition, the agent can maintain the reactor outlet temperature within ±1.5 °C and steam pressure within 0.1 MPa of their setpoints, respectively, by dynamically adjusting control rod positions, control valve openings, and pump speeds. The results demonstrate the effectiveness of the optimization framework and the feasibility of reinforcement learning in designing control strategies for advanced reactor systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.