Abstract
Reinforcement learning (RL) is a computational framework for an active agent to learn behaviors on the basis of a scalar reward feedback. The theory of reinforcement learning was developed in the artificial intelligence community with intuitions from psychology and animal learning theory and mathematical basis in control theory. It has been successfully applied to tasks like game playing and robot control. Reinforcement learning gives a theoretical account of behavioral learning in humans and animals and underlying brain mechanisms, such as dopamine signaling and the basal ganglia circuit. Reinforcement learning serves as the “common language” for engineers, biologists, and cognitive scientists to exchange their problems and findings in goal-directed behaviors. This chapter introduces the basic theoretical framework of reinforcement learning and reviews its impacts in artificial intelligence, neuroscience, and cognitive science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.